19 research outputs found

    Efficient Transmit Beamspace Design for Search-free Based DOA Estimation in MIMO Radar

    Full text link
    In this paper, we address the problem of transmit beamspace design for multiple-input multiple-output (MIMO) radar with colocated antennas in application to direction-of-arrival (DOA) estimation. A new method for designing the transmit beamspace matrix that enables the use of search-free DOA estimation techniques at the receiver is introduced. The essence of the proposed method is to design the transmit beamspace matrix based on minimizing the difference between a desired transmit beampattern and the actual one under the constraint of uniform power distribution across the transmit array elements. The desired transmit beampattern can be of arbitrary shape and is allowed to consist of one or more spatial sectors. The number of transmit waveforms is even but otherwise arbitrary. To allow for simple search-free DOA estimation algorithms at the receive array, the rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semi-definite relaxation is used to transform the proposed formulation into a convex problem that can be solved efficiently. We also propose a spatial-division based design (SDD) by dividing the spatial domain into several subsectors and assigning a subset of the transmit beams to each subsector. The transmit beams associated with each subsector are designed separately. Simulation results demonstrate the improvement in the DOA estimation performance offered by using the proposed joint and SDD transmit beamspace design methods as compared to the traditional MIMO radar technique.Comment: 32 pages, 10 figures, submitted to the IEEE Trans. Signal Processing in May 201

    Moving Target Parameters Estimation in Non-Coherent MIMO Radar Systems

    Full text link
    The problem of estimating the parameters of a moving target in multiple-input multiple-output (MIMO) radar is considered and a new approach for estimating the moving target parameters by making use of the phase information associated with each transmit-receive path is introduced. It is required for this technique that different receive antennas have the same time reference, but no synchronization of initial phases of the receive antennas is needed and, therefore, the estimation process is non-coherent. We model the target motion within a certain processing interval as a polynomial of general order. The first three coefficients of such a polynomial correspond to the initial location, velocity, and acceleration of the target, respectively. A new maximum likelihood (ML) technique for estimating the target motion coefficients is developed. It is shown that the considered ML problem can be interpreted as the classic "overdetermined" nonlinear least-squares problem. The proposed ML estimator requires multi-dimensional search over the unknown polynomial coefficients. The Cram\'er-Rao Bound (CRB) for the proposed parameter estimation problem is derived. The performance of the proposed estimator is validated by simulation results and is shown to achieve the CRB.Comment: 17 pages, 4 figures, Submitted to the IEEE Trans. Signal Processing in Aug. 201

    Guest Editorial Special Issue on Integrated Sensing and Communication-Part I

    Get PDF
    Driving a gradual integration of the physical and digital worlds is perceived to become a reality in the 6G era, from vehicles to drones, from surveillance facilities in cities to agricultural tools in the countryside. Jointly motivated by recent advances in communication and signal processing, radio sensing functionality can be integrated into a 6G radio access network (RAN) in a low-cost and fast manner. That is, future networks have the ability to “see” the physical world through imaging and measuring the surrounding environment, which enables advanced location-aware services, ranging from the physical to application layers. In essence, a radio emission could simultaneously convey communication data from the transmitter to the receiver and deliver environmental information from the scattered echoes. Therefore, sensing and communication (S&C) functionalities are possible to be co-designed to utilize resources efficiently and to assist each other for mutual benefits. This type of research is typically referred to as integrated sensing and communication (ISAC)

    New results on robust adaptive beamspace preprocessing

    No full text
    corecore